ARYAN SCHOOL OF ENGINEERING \& ECHNOLOGY

 BARAKUDA, PANCHAGAON, BHUBANESWAR, KHORDHA-752050

LECTURE NOTE

SUBJECT NAME- ADVANCE CONSTRUCTION TECHNIQUES \& EQUIPMENT

BRANCH-CIVIL ENGG.
SEMESTER-6 ${ }^{\text {TH }}$ SEM
ACADEMIC SESSION-2022-23
PREPARED BY- PRATIKSHYA BHUYAN

Advanced consfruction Tech neque. \&
Equepmients.
ACTE
$\mathrm{Ch}-1$
Fébers \& plastics

Febuers
Febber as swen a reenforceng maferials, Febers are sropll pieces of reenforceng naterial possessing certan charactericstics - s properties.
types of fcbers
the defferent common, types of febers whech are generally esed in consfrcection are
(a) steel fibers
(b) corbon febers
(e) glass fibers.

Steel fibers
steel fiber es a metal reonforeement, steet fiber for reenforcong concrefe es' defned short, descrete liengths of steel fibers weth as aspect ratio from aboet 20 to 100 .

A certan cumoent of sfeel feber. cn conerete can be couse qualetative. changes on concrete's physical property, greatly oncrea sing resistance to cracking impaet, fategue \& benderg, tenaeite, durobeilety, and ather properties.
carbon fibers
Cor bon febers can be deffined as febers with a carbon conteint. of 90%
or above, They are prodieced by thermal conver fion of organic fibers weith a lower corbon contertsuen ay polycercylonètrile (PAN) contaenerg several thousand felarments woth सित्हmeter betn 5 \& 10 kem.
Types
the common types of carbon febercare
(a) PAN typee carbon fober.
(b) petch type carbon fiber.

Glass fenbers
Glass febers ore a very versatele class of materials. they are vesed to exitensively as asenforcement fobers for polymeric resins suecn as repony f. ansafurated polyster.

The stiftness of the jlaes fiber es a lower thon that of the other venforcement febers, but. it possesses the destenct advantages of combening a very hegh strength woth loeo den sithy ond mosf af all a very reas anable cosf. Gloes fiber well contance to be cesed as a major reenforcement fiberwell ento the focteure.
Types
The comman types of glass fubers are
(a) A glass
(-) $E C R$ glaes
(b) $A R$ glaes
(च) R giaes
(c) C glass
(d) D glaess
(e) E glass
(b) s glass
(f) $5-2$ glars

Use of fizber as a con ofructern
naterial
\qquad
In a wede range of indiestries incliding the consfruction endueffy, the applicatcin of fiber material withen cormposites hay con arstently expanded. Suen positeve include are
(a) Improve choracteristices \& propenties seen as strengton; toeghness, durabelity, rigedity s duectelity.
(b) emproved ressistance is performance
(c) corrosion \& other attaxs.
(d) Emproved stabclity
(e) emproved themal properties \& oper áting temparateire.
(f) Redveqton \& Nuver cost of design \& ensfallation.
properties of Ebber.
(a) $t=g^{8}$ ten sile sfrenigin $\&$ modulces of elasticety.
(b) btegh resisfance to weather \&s aesdic environ ronents.
(C). Grod thermal pioperties, ss stabelity
(d) grod electric, electromagnetic \& socond onsfallation properties.
Ces cmproved ofroen fachlure:
(f) Strong, hoerd 83 reged
(g) Resiftance to radeation suv leght (b.) Absorb socnd and Vibratian reolation.
plastics
The plastic is a synthe tic material that are bosed on polymers, the consfruction endueftry uses plastic for a wede rorge of application brecause of its versality, strength to weeght noteo, dierabellety, corvosion eresistance. \&s so ar,
Types
The defferient common, types of plosfic.used on construetion care $P V C, R P V C, H D P E, F R P, G R P$.
puc
Polyninge chloride plasfic 3 a kend of comman bueldeng plastic made form polymerized vingl chloride monomer.

It has better chemical stabelety and. ageng resisfance, but poor heat vesisfance, It may decompose \& meta mor phose, if the temp exceeds $100^{\circ} \mathrm{C}$. Usceally it shoreld be used at temp of below $60-80^{\circ} \mathrm{C}$. By addeng deffferent types of plasficizer, hard \& soff polyvingl chlorzde plastican be made
RPVC:-
Regad puc es a sfrarg sfiff, law cost plastic matrerial that is sosy to foobricate and easy to bond lesing adherives or solvents. st is also eosy to weld lening. thermo plastic welding equepment.

Reged poly Ningt chloride (RPNC) is o non-flammable material that is resisfant to weathering. With the propier additches. RPVC can be un sfobilered so that et weth stands sun light, Beeause pVo hosan excellent resistonice to rqueous spl? st es frequently used er applecateon that
come in contaet weth water, thclude doprways, wendows pipes of even extruded ware covereng.
HOPE: (HEA density poly ethylene)
gt is a thermo plasfic polymer made from pretroleven. As ane of the most versatile plasfic materials around.

HOPE plasfic es lesed en R wide variety of applecations, ercluding plastic bottles, malk. jegs, shompoo botties, bleach bottles, cottiog boords, and peping,
knowin for its ocetsfanderg, tensite strength ard large sfrength to den sity ratzo. HDPE plastic hos a negh- empaet resistance and meltarg point..

Bendes its use for food opplications et can be found $2 r$ un ascal places, encludirg \rightarrow cood plasfic cormpobites.
\rightarrow plastic surgery,
\rightarrow Snoe boords.
\rightarrow shoe leofs
$\rightarrow 3-0$ prenting filomert.
\rightarrow Food \&s beverage contamers.
FRP
Feber remforced plastic is a composite materiol made of polymer matria reenforced wath fibers. The fibers are esleally Hass, corbon, oramed, or basalt. Ranely other' febers soch os. paper, wood ar as bestor, have been. esed. the poljner is useally an epory vingh ester, or poyster thermo setting plastic, though
phenol formal dengde resins are stall in
use.
FRP, ore commonly used on the aerospace artomative, marine, and construction indus. tries. they are commonly found on ballistic armear as well.

GP
Glass fiber reinforced plastic is a compo. site material that consist of a polymer matron and glass fiber, gie polymer matrix is usually an epoxy, vinglester, or polyester thermosetting resin.

The basins bring. the environmental \& Chemical ressifance to the prodvect, is the bender for the fibers in the sffuctural laminate \& define the forms of a GRP Pan. - The glass fiber add sfrengst to the composite. They may be randomly arranged or conveniently oriented.

The moot common types of glass fiber used for GRP is E-gless, which is alvmno-borosilicate glass. E-CR glass is also commonly used in applications that requeve particularly high protection a gaenst aceder con rroकाon,
Properties of plastic
Each plastic material has its own peckliar properties to suet its particular ceses, The success of plastic as an engeheerong material well depends up on the sate eton? of variety of plastic.

Following core the general properties
of.
\rightarrow Appecitance.
\rightarrow Dectcileti.
\rightarrow chemical resistance \rightarrow Durability
\rightarrow Dimensional stabelify \rightarrow Fonisheng
\rightarrow Electric enscelation
\rightarrow Fere resistance
\rightarrow Homèdety
\rightarrow moin tenance
\rightarrow optical property
\rightarrow Sorand absorptien
\Rightarrow weather resistonce
\rightarrow revenng
\rightarrow Merting point
\rightarrow Recycling
\rightarrow struengtr
\rightarrow thermal property
\rightarrow weeght.
uses of plastic:-
A wede range of opplication of plastics on the boelldengs ave
\rightarrow uses of plasfics en facade panels, exterior covering; corpentry etc.
\rightarrow Uses of plastics on entercour cowereng, floors, walls, ceeling. Doors, portition efe,
\rightarrow Uses of plastics in Roof coverengs, reghtness, Domes \& leghting elements.
\rightarrow Uses of plasfics en sanetory equeipment \& pèpong.

Artificeal tombers
The foraber whech, is converted in a factory by some meohanical processes is termed as artiti csal tember or induesfirial tomber. And such tember possesses derired shope, apperance, strengfn is durabrelety.

Types
Follow ing are the sorne variereties of artiftcaal tembers.
\rightarrow veneers
\rightarrow ply 000 C
\rightarrow Feber boord
\rightarrow Impreg tembers
\Rightarrow comperg tember
\rightarrow Hard board
\rightarrow Glulorm
\rightarrow chep booerd
\rightarrow Block board
\rightarrow flesh door shutters.
properties of timber
The quality of tumber must be enscered before using of for ar perpose, ghe quality con be enscered by onvesfigatong the properties of tomber

Followergs are the phigsical of mechoenecal properities of teriber.
\rightarrow colocer
\rightarrow Appewrance
\rightarrow Hardness
\rightarrow speeetic gramity
\rightarrow moistcere contant \rightarrow Deerabillety
\rightarrow Graer?
\rightarrow-stmengtr
\rightarrow Deninty
\rightarrow Shrenkage \& Swelleng
\rightarrow Toreghness
\rightarrow Elastionty
\rightarrow worpong
\rightarrow Deflecthess
\rightarrow workabrelefy
\rightarrow sounaness
\rightarrow Free of abracto?
whele selecting tombers. for cese, one rovest enecle these properties to ensure: the qualety. At the some tame, it is also essential to enswre that the quamber is defeetleos.

Strength of timber
the best quality ternbers have the nighest strength, Strength means capobile to bear leads. Anisotropic material ike timber has different structure of the different portion so the strength of timber es different at different points. Grain structure determines the strength of the timber, same types of strength are
\rightarrow compressive strength $500 \mathrm{~kg} / \mathrm{cm}^{2}$ to $700 \mathrm{bg} / \mathrm{m}^{n}$ load is enough to test timbers strength.
\rightarrow Tensile strength: when timber es enovig strong to the tensile force. If perpendéculor force is made then. lumber ic weaker. $500-2000 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{is}$. the range of tensile strength lord, \rightarrow Trans verse strength: Enough bending
strength indicates good qualify timber.
Acoustics material
when the sound intensity as move, then et gives great trouble or nuesance to the porticueler area like aceditoricm, cinema hall, studio, recreation centre, entertainment hall, college reading hall, Hence if s very important to move that area or room to be sound proof by using a scettable material called as (Acoustic material. It B measured on decebels(db),

Acoustic roatercal play a vital role An the varioces area of buesldrig construetorn.

Properties of acolestic material
(ब) Sound energy is coptered \& axdsorbed (b) It hos a loe reftea is hegh, absorptrin of sound.
(e) Heghier den inty emprones the sound absorptian efficien oy ot low friequenciey,
(d) It redeces the energy of s ocend waves os they poess through.
(H) Hegh density material help to vinaentaen a loed flammabollyy perfor mance:
(A) ot contraus the s and \&s nousie level.

Uses of acolesitic recaterial
\rightarrow sticon be used for noiserediectren \& nouse aborptic?
\rightarrow st rapees the s ond vore aucteble wnien is clear to lisfen wath out ary desturbornce.
\rightarrow st soipriesses echos, reverboration, refteotion and resononce.
\rightarrow gmp. specefication for norse rediectin? \& noise absor ption.
\rightarrow A ringh acoustic borrier blooks eontrols aenborne noise
\rightarrow Socnd proof deor \& wondones ore designed to rediece the tronsmission sornd?
\rightarrow Asornd proof matercel con encorpor rate sound prooferg.
wall cladderg
wall cladding s the applicatean of one material over the wall for aesthetic punpose once the wall as clad it well appean that the wall 3 made up of some other material than et actually π,

In consfrectcon cladding B lased to provide a degree of thermal insulation and weather resistance, and to improve the esperance of bueldirgs.
cladding can be made of any of a wide norge of material including wood, metal, brick, vinyl and composite mater reals that can include alumenivem, wood, blends of cement and recycled polystyrene, wheat/vice strow fiber.
Types of wall cladding
wall claddengs are available on
several types of forms. Some of the common wall cladding ore
\rightarrow stone cladderg
\rightarrow ring cladding
\rightarrow Alcmanicom cladderg
\rightarrow wooden cladding
\rightarrow Brick cladding
\rightarrow Fiber cement cladding
\rightarrow stainless of eel aladdery.
Plaster board
It es a panel made of calcuecm sulphate dehydrate (gypsum) usually pressed between a facer and a backer.

It \Rightarrow ased to malee enterior wode or ceelerg.
plaster board is used to help beedde. and derigners meet bcelding regulatin Lor forre proteotece, acomsfic enscelation and thermal efftceencyr ot cor also help to contral condensatean \&s potential domoge on aress of hegh bemedety. plasfer board coteguriesd based on? perfor fourricence;
\rightarrow fore performance
\rightarrow Socra $!$
\Rightarrow thermal $!$
\Rightarrow acensfic !
\rightarrow Empact resisfance
\rightarrow Contral, vopoen, nozsfere \& waten
\rightarrow weather defferice.
Notcro-silfeca
raicro sillea on concoute eroproves its sfrengin and duerabelety as it provides more eneform defficbution and a greater valcme of hydrateon produets, \& decreases the arg. कize Bf pares on the cement poofle

Mrcto sillica, es also bnewon as silica feeme, is a nereral admintere composed of very fone saled glassy spheres of silecon axede, stis usceally forind as a by produet A° the ondes troe ropenctaotere of ferrosiliecon?
and retallec कiltacan En- negh-tempn electric arc fuernaces.
types of micro कiteca
ricto ailica comes on 3 forms whech
are
\rightarrow poodered micro-silica

$$
\rightarrow \text { steery }
$$

propertites of micto silica.
\rightarrow st \Rightarrow grey, nearly whete to neounly block pooder.
\rightarrow spmerical particles less then $1 \mathrm{~mm} n$ doometer.
\rightarrow ghe bulk density of micro-sileca is based on the degree of den sificater 8. Narces from 130 to $600 \mathrm{~kg} / \mathrm{m} 3$
\rightarrow ghe sperific granity roenges bet 2.2 to 2.3. Artificial sond

Artificeal sornd, clso called crushed sand or nehtantical sard, refers, to rock, mane traeleng or, ondesterial waste granculeses weth a perticle. size of less thon 4.75 mm , whtch are possesses by mechanical aneshirg and feeving, but does not. onclude soft and weathered grancues.

Defference bet? antiffceal sand f Nateral sand.
ortificeal sand nateral sound
\rightarrow mon ufactered en factory
\rightarrow Hogher concrete sfrengto
\rightarrow posening up t
\rightarrow passing apto 3

Bonderg agent
Adnesive bonding Esued to fasten tues serpaces together, escealty produexig a smouth bond, zhes joncrej technique rnolves glves, epoxees or varcocs plastic agents that band by enoporation of Solvent or by evisty a bondrog agent, wocth heat, p ressure or riome, lyestong,

Hestorically glues hame produeed relatrively, weak bonds..Hoeqever the recent use of plosfic bosed agent swen as the new berper-glues that selt core weth neat hos allooed adnesien weth a strenagh approching that of the bonding rinaterial them. setures.

Chr2
Prefabricaten)
Prefabricateon is the practice of assembling components of a struetere in a faectory or other rnancefacturing site and trans por teng eomplete cessembles to the construetion site conere the stocetere es to $b<$ located.
Need of pre-fabrication of buehdengs
(1) prefobbicated ifruetures cete used forsites wnech are not scentable for normal con of ruettar method beenos h dlly vegion ond also when normal. constrcetion ronterials are not easily arachoble.
(2) prefobrécateon faceletios con also be created ot near a site as es done to molle concrete biocks cesed an a ptone of conventeond bnick.
(3) Struetures as anech are ased repeat edly and con be sfandardized suenas moss noesing storage sheds, godoeons, shelter, bes' sfond', Securvy cobens, site offices, Fool over bredyes, road bridges Tebvecer strueteure, concrete buelderg bloek etc, are prefouricated strueteres.
Hestory of prefabricatec?

- the practice of pretabricated consr trectecn have not be evolved recently but it excsts ffom ancerent times rethr orgh there have been modefication:

In Ets percepteve and execution as per the local rnaterical avallable and the environ mental condetions, theerc hos been a derrect empact of the local custars, tradetions and beleets on the technique as vell.
the preforbieqtion teoh erele in the very ecorly evilisation moyg be analyzed by categorizeng them os followes.
\rightarrow sweet track consfrected on england around 3000 BC
\rightarrow ancerent stelanka on the kengdom of Anveradnapura \&s polonnarvia.
current leses of prefabricatien
The most oEdely sed form of prefabrication n bueldergand cenil engg. is the use of prefabricated concrete I prietabricated sfeel sectecns on sfruetere where a porticular port or forms is repedeted many times, It can be deffin calt to eansfruct fte form work res queired to mould concerete components on site, and delevereng wet concrete to the site before It sferts to set requenes preeise time management.
prefobrication technieques eere ased an the constreetcen of apartment blooks, and holesing developmest with repeated noesing unets. Ghe qualety, of prefobricated
nowsing anets had encreased to the point that they man not be destir ngueshable fram tradiztoonaty buelt enits to those thect live in them. The techneque also ased mo office bloces, wore hoceses and factory buelderngs. pre fobricated, steel and glass seations are wedely used for the expterior of the lorge bieldengs.
Hheory \& process of prefabvicaticin.
An exarnple from house bueldong Ellesfrate the process of prefabrication. fhe. conventeonal method of buelderg a hoese es to troensport, brick, tember, cement, sond, steel and construction sgarregate etce to the sitre ond to consfrcet the nouse on site from these matercels.

In prefabvicatied consfruetion orily the forendateom pare construafed m thes way, concie seqtion of wall, floors S roof are prefabricated co a factory, tronsportied to the site, lifted into place by a crone s b bolted togethen.

The theorg benend the method es that time \& cost Es saved if simelor consfruaten tostes an be jrouped \& assembly lene trechniques aon be emploged r^{n} prefobircateen at a locateu where sxilled labour Es avaí loble, whele congestion at the cossembly
site whech woste teme, con be reduced, the method fond cepplication porticutarly conere the sfrueture Is. composed of reperiting conets or forms or conere melte ple copses of the. some basic sfrueture are breng consfructed.
classifrcatere of prefabricated system.
classificatecn acoordeng to theer degree of precast repemerits used in the consfruetion.
(a):medicem consfrceetccr
suppose the rooferg sysfems and norezontal members are provided with \therefore precosted elements. These consfruetoons ate knouen os medicm prefabricated consfructeen,

Here the degree of precast element is modenate.
(b) Large prefabricateen

In lerge prefabvieatcon mosf of the raembers leke wall panels, rooforg/fioovig syeterns, beams and colvan's aoe pre-. fobrieated.

Here the degree of prelcosf eternent \& hegh.
one ofthe maen faotors cohech affect the theory of prefabrication Es transport.
(c) apin syster of prétabricatic)

In the total prefabvicatoon syofem the space fremes ooelcasted as a sigle unct and erieted at the site.
the wall fettirg and other fix ing are dane on site, yes type of construction Is pnoeen os open system of prefabrication.
d) closed syoferm of prefabrication

In this system the conale things are costed eth fixing and erected on their position.
(e) portal prefabricated?

If hes method of construction the buikderg elements nequened are precast and then erected. Since the cosforg of the horizontal elements often take more time due to evection of frame work, the completion of the buelderg es delayed is hence the method 3 restored.
(1) Total prefabricatice
very hegh speed can be achieved by using the method of construction. The method con be employed for frame type of consfruetean or for panel type; the total prefabrication os done onsite or off-site. she choice, of the two metres diepiend on the situation when the factory produced elements are transported and erected on site, we call ret off site prefabrication.

Types of prefabricated systers
The wond siffern is referred to \& porticular method of construetcon of boeldergs using prefabricated compon inents wheen are renter-related En. Tunction and are produced to a sect of Enstruction weth certaen consfraents. Several plans are possible using the. same set of components. The degree of fiecebeclety vories fion syskem to syefiem,

The various prefabrieateon syofems. are
(1) S mall prefabricatén
(2) Miediem prefabvicatcu
(3) Large prefabvicatec?
(4) open prefabricater?
[a] \rightarrow partial prefabricaterd open syeften
$(b) \rightarrow$ Fell prefabricateer
(5) Large panel preparbricysim. prefabric ation syofem.
(6) wall sybtem
$\rightarrow \rightarrow$ eross coall syofem
(7) Floor syofterm
(8) Stacer case syifiem
(9) Box type syottem,

Advantages of prefabvicateen
\rightarrow self sepporterg ready made components are used, shetterarg \& scaffolding is greatly reduced:
\rightarrow on- site construction and condition Es minimized.
\rightarrow Less waste may occur.
\rightarrow construction tome Es reduced \rightarrow \& beitdergs are completed sooner.
\rightarrow prefabrication can be located unsere skilled labour os mare readily available.
\rightarrow Saving. in cost, material, time \& mon power.

Dis advantages
\rightarrow Local jobs are lost
\rightarrow simelorly leaks can from at joints is prefabricated components.
\rightarrow carefiel handling of prefabricated components 8 ch as concrete panels steel and glass panels es reduced. \rightarrow Transporteon cost ray be higher for volceminoces prefabricated seetering. \rightarrow Large, group of bueldengs from the same type of prefabricated elements tend to look drab; \& mono tonoes.

Modchar co-orden ateor.
modular co-ordination mears the enter dependent arrongement of a demension based on a premary value accepted as a module. Ghe sfrict observance of rules of modular corordrenofton faeiritated.
(1) Assembiy of mogle components ento Narge components.
(2) Fewest possible dEfferent types of component.
(3) Mentmum wastage of cutteng needed.
Modular cor ordination s the basis For a sfandardesation of a moss produection of componest.

A set of reles would be adequate for meetcing the nequeremerts of con nentional and prefabricated corefrvefoon. Hhese rules are adtaptable for
(a) the plonneng grid on both derecten of the horizontal plan shall be
(i) 3 M for residential \& institutional bueldergs.
(2). For condustrial-bueldery

I5M for spons cepto lim
30 m for spans bett 12 m \& 18 m
60 M for sporns over 18 m
(b) In case of external walls the gride lines sholl coincede w ith the centreline
of the wall or a lenc on the wall scm from the enternol face of the vall.
(C) ghe planneng modcele in the vertical derection shall be 1 M up to \&s encliedirg. ∞ heeght of $2-8 \mathrm{M}$,
(d) preferred cacrements of a stcll heoght doars, werdoues pend other fienestration shall be TM.
princeple of prefabricater)
The maen reason to choose precolt construetion method cover conventeional method.
(1) Ecanomy n large scale project with hegh degure of repetictern in? work construatern.
(7) Specede requèvement an fenisherg.
(5) consist ency n stacheral qualety.
(4) contral.
(()) Ecost speed of construetion.
(S) consfraents in araelasility of site resoierces.
(6) atner spoce \& enorironmental con stachts.
(7) overall cessessment of same on all of the above faetors whren points to be Superevery of adopterg precost consfructea? over convienteon metnod.
(8) longe groceps of bueldrerg from the some type of prefabricated efemients tond to drap and monotonoes.

The fellowerg detalle geves the cosf emplecation of precost construction \&f conventional on situ method.

* prefabricatzon elements
(1) Flooring Roofing systien.
(1) pricies beems precasf beam
(3) precast collemn
(4) precast walk panels.
(5) precasf siatrs.

Prefabricated elements the prefabrication sfructural components are
\rightarrow Based on tre cerea (or) काze of prefabrieates
\rightarrow Bosed on weeght of prefabvicatey
\rightarrow Bored on the ternotron
\rightarrow Bosed on the shope
\rightarrow Bosed on the material
Fndian standard recommendatien for nodular plannerg (is 921 -1987)
(1) frefeored noverontol demensions
\rightarrow The preterred horziontal demensions, for bueldorg, components and bceeldrig. are sueh multiples of 3M. wetioch ore preferred agachst other multeples of bosic: module.
\Rightarrow The values of of multimodule for norizontal corondination demen कions in modular co-ordination shall be $3 \mathrm{M}, 9 \mathrm{M}$, L5M, क1 $\mathrm{M}, 27 \mathrm{M}, 33 \mathrm{~m}, 39 \mathrm{M}$ \& 545 M .
(3) modectar room demen biuns:-
\rightarrow fin the perfeet modclar designs all foom dimensjons shall be modular
\Rightarrow ghe modular room demensiens shoul bedesrgned and that modieber feixteres fottirgs \& portcitions shall fict into ther wethoret shoperg on site ghre shall only be achereved ahen all bueldeng components are made avoelable on modular demension for the modular iplonnerg.
(c) Axial plonntioy modcelar room dimension becomes $n \times m+l o m$ m wettrs plasfer and n ampt 30 mm wreth ocet ploster.
(D) 5-mm Rule
horizontal demensons is desian of the buelderops are cortralled by the planntig rodule. $3 \mathrm{~m} . .$.
(E) Residen tial bueldrges \because Horciontal preferred demensions Fer residentoal bueldergs shall be. meletipie of $3 M$
ch-3
Earthquake Resistant construetcrn
Bueldeng confèguratior.ir
the srecond strep of seesmo niesistart. consfruction is the configgurexton of land resisfing systien of bueldetgs is 1893 . (part-1): 2002 has recommended buelding. confogueration m sen 7 for the better performance of blelding deerigg eonthquakes, An emportant featiane on buelderg confegueration es ats regularity and symmen try in horizontal and vertical plane, seesmic behawiour of ervegular shoupe plins are differ from negulor shape.

fig- Example of plon Erregularety.

feg - Example of vertical erregolarity

fegr-Example of heghiy torsional confeguerateon?

fig - Emenmple of short colvenn, (Fogr Gieneral buelderg confegenatien) problem problern

Loteral load resisting ifrueteres
A shear weall ics a sfructural siysteon compsed of braced panels to counter the effects of the lateral laad. acting an a structecre.
Norment ressiturg fromes
Momient reatstarg frame is a rectelenear assem blage of beams and colvenins wetr the beams vogedety conneeped to the colcmis, nomient resìstong frames ellow wendous bet ere not verg sfiff. Moment
rerisfong frames are ronde ep of beams and columns that resist lateral loads through flexure neropeus and through stiffness of riged joints connitetong the beams and callemns. rnament resisting frames generally cost more than biaced frames.
Braced frames
A. braced frame is a sfrcecteral system which is designed primarily to resist w ind \& earthquake forces. Members, en a. braced.? frames pure designed to work th tension 83 compression, similar to a truss.

Braced frames are almost siquays composed of steel members Braced firatres resist loads through a series of trues made of steel members, the diagonal number of the tresses verst lateral load on the form of areal stresses, by ether tension, or compression?
Shear walls or (bearrog call seysfor))
In structural engeneering. a shear wall Es a structural system composed of braced panels to counter the effects of the lateral load acting on a sfrcecture. The wind is see med loads are the most common. loads that shear walls are designed to equry shear walls no option for w endows beet very stiff,
shear wall also provide resistance. to loneral forces by cantilever action throlegh shear \& bending.

lege moment.
vesisfing frome

bearing loall syostem,

Bueldring enaracteristics.
the sersmic forces exerted on a buelderg are not extremly developed forces leke wond ensferd they are the hesponse of cyclec motions at the bose of a beelding cousing acceleration and hence enertia force, the response es therefove essentially dynamic in natuere

The dynomic properties of the ofreefive sues as natural period, dampery ρ mode shape playg a arieceal role en, determeneng the resporse of buelderg, Besides other characteristios it buelding system also offect the seermic rexponse such os duetelsty, buending foundation, resporse of non- sfrueferal etemerts etc. The effects of bueldring characterisfics on its sesmic performance are \rightarrow Mode shapes is fendamental percod \rightarrow Buending firequen oy \& grochd period
\rightarrow Dampreng
\rightarrow Ducterity
\rightarrow sermic weigh't,
\rightarrow Hyperstaticety/Redundancy
\rightarrow Non. strueteral eternents
\rightarrow Forndation soil/iqueifaction
Effect of structural erregularities
\rightarrow vertical des continuities on laad poten.. one of the mojor contrebutars to Structural dornage or strueteure dering strong earth quase is the descontinuetiey erregcelarefies in the lood path or lood transfer.

The sfreeture should contaon a contenuous load poth for tronster of the sesmic farce, which devlop due to acceleration of Individual elements, to the ground.

Faolvere to provide adequate strengfin \&s toughness of Endividial elements on. the s-fetem, or faelure to tie individual elements together ean resuit on disfress. or complete collopse of the system.

fog- dascontincous shear wall.
\rightarrow Irregularity an strength \& sfitifness
A weak storey \mathbb{A} defined as aneien Which the storey's lateral strength is less than 80%. Af that on the above. storey.

The storey's i lateral strength is the total strength of call seesmic resisting elements shearing the storey shear for the dire under consideration

fog-sfiffness crrigulateties, soft. storey
\rightarrow moss irregularities
Mass irregularities are considered to exist where the effective mass of long storey Es more than 200% of the effective mass of an adjacent storey.
the effective nos is the real moss consisterg of the dead coesght of the for plus the actual vieght. (fog mass ireof partion s equipment. buetdeng
\rightarrow rertical greonetric Erregeilarettes

(fog-vertical geametric Erregularitg
\Rightarrow proxiemity of adjacent boeddeng
poundeng domage is cacesed by hetting of turo bueldengs construeted on close pronimety with each other.
pounding moy reascet. En Erreguelar response of edsocent bueldengs of defferent heeghts due to defferent dynamic choiracferistics,
Plon configueration problems \rightarrow Torsion Erregularities.
Tor sion Erregularaty shall be considered when floor deaphagms are raged on thed own plan an relation to the vertical strueture elements that nesist the lateral forces.

Torsion Erirsegularity B considered to enit onen the maxm storey drcitf, computed with derign eccentricety of one end of the structure transverse to an aus more thon 1.2 temes of avg. of the storey
dreifts of the two ends of the sfruepure.

figr torsion Erregularities weith stiff dẽaphragm.
\rightarrow Re-entrant corners
The ve-entrant lack of continvety or inside corner B the cammon characteristics of overall buelderg confeguraticn thit ro plan, plon confegeration of a structure and ets lateral foree resisterg syoftern contain re-entrant corners, cohere boto projecteons of the sfructure beyond the re-entrant corner are greater than 15\% of its plan demension in the geven directen.

feg-example of bueldeng enth plar? erregulareties.
\rightarrow Non-parallel 8ystem
The mentical load rerriterg elements are not porallel or symmetrical about the: mojor arthogonal axes of the lateral force resisfing system,
 systern,
Thes problem es often exaggeratec in the triangular or bidge shoped beeldirgs nesulting from sfreet onter-sem at on acule ongle.
Safety consideration during addetional conisfructeon and alteration of exesteng bueldengs

Existerg bueldergs offen undergo alteration derirg thieer lefe to change, modety or amprove theer performance or the nature of theer use.
common examples of alterations include
\rightarrow Total or partual charge of use
\rightarrow Extren sion
\rightarrow partial demoletan
\rightarrow Lenking or Seporating spaces:
\Rightarrow making or closing operings
\rightarrow Retrofettrong a new component or feature.
\rightarrow maentienance.
\rightarrow Decoration.
\rightarrow Renovating an exisiting component or featuere.
some alteration mary require planning permesoian. Other alteration may be considered permeated developunents for which planning permission es not required.
Additional strength ening measures an moso. nry buelderg -
corner reenforcement:
comer reenforcement used at wall intersections or near corners of square or rectangular operiorg on walls; slabs or bears.
rictal reinforcement for plaster of restraint corners to provide continuity bet +100 intersecting planes.

Lintel band:
Shes bond es provided at lintel level on all Internal s external longitudinal as well os cross walls except partition walls. st provides integrity to the structure s resistance to oret-of plane wall bending. The motel bond if provided en partition walls well also enhance their stabillety. the purpose of intel and roof band is to prevent the collapse of roof.
sell band
This band es similar to lintel bond but It \Rightarrow provided at sill level. Shes band reduces the effective height of mosonvy peers between openings. This is expected to reduce shear cracking in pets. It hos not been recommended 80 for en codes.
plinth band:;
Hes band as provided at the plinth level of walls on the top of the foundai tron, which B useful in sustaining differential settlements porticulouliy when forandation soil is soft or has uneven properties.
roof bound:-
Roof bond z similar to lentil band but Et a provided below the roof or fluors, st improves the in -plane regedety of horizontal fluor diaphragms. Such bort need not be provided on case of reged dEaphragm,
Coble bond: hes band shall be made allow the perkins. with the roof band at the eontenuous st restricts the oret-of-plane folvel. of gable wall, which es susceptible earth quake forces
ch-y
Retrofēting of sfructuras
sources of weakness in: RC frame beelderg:.
sarthquake ingineerirg. is not a pere. soience, rather it has been developed. through the observation of faelverc of sfructure dering earth quake.

The following maen sovrees of weakness on reeniforced concrete moment resistang frome bueldengs,
(i) des contoncous load path/entermpted leadpatr/Erregular lead porth.
(ii) Lack of deformateoi compatebrthety of sfructeral nembers.
(Eci) qualety of workronshep 8 poon quallety of materiols.
structural damage due to descontenuaus Lad potr:

Every structeré must have two land remisting systems (a).
(a) vertical logi, vesisfing system for transferreng the vertical logid to the grocend \&
(b) horizontal la, resisting systiem for transferrong the horezontal laad to the vertical load system.

St es Emperateve that the seesmic forces stiond be properly collected by the norizontal froming system \& properly transferred ento mentical lateval
resisting 8 -ystem, Any des continuety/ Erregularity 2 thes hagd path or lord tramfer may cause are of the majon contri butions to sfruefural domage diering sfrong earthqualle.
Structural dornage due tolack of deformation:-
The maen problems on the struetural members of moment vesisting frome bueld. ing are the lemited amocent of ductirky and the anabelety to redirstizbute load on order to safely wethsfands the deformatcors imposed epon en response to seesmec loads.

The mosf commor regeon of faelure in on exesfong renforeed concrete frame are shown in geven fog.

Global behoviour frames

the regeon of faelvie maybe on eolemins, beams, walls and beam-colvemn Sonts. st is emportant to con sider the consequences of member faetere or sfruetural performance.

In adequate strength and deectelty of the sfructural member can and well resielt in local or complete faelvere of the syestem:
pelality of work manshep sy materials:--ghere are numeraus ensfances where famlty practices and leek of quality contral have contributed to the damage. The facelty consfructean practices may be leke, lack of amount and detaeiling of veen forcement as per requerement of code porticularly when the end of lexteral reenforcement 3 inot bent by 135 degrees as the code sprecteed. rnong bueldzrigs , have been domaged due to poor qualety cantrol of design. materzal sfrength as specefied, spalking of conctete, by the comorian of embedded rentorarg bors, porous concrete, age of concrete, proper maentenance ete. classificateor of retrofetiong fiechnique \& theer uses:

There are two ways to en hance the siemec capacety of exssting struetueres. The forst is a sfructural level opprooch of netrofitfing whech envolves glabide modefications to the sfrceteral systien, The secord is a member level approaen of retrofititorg or local netrofenticieg, whren deals weth an Encrease of the duetillety of components with adequate
capaeeties to satisfy their speceitic Lemat states. Bosed on the above concept the avaelable technique of retrofittiong of veenforced cancrete bueldeng may be clasinfied os followorg

Retrofittiong techniaues

\rightarrow Sopplemental base erg and
bolation.
fogr Global \& Local retrofètiong methods

Generally sfructural leviel retro fettergs are opplied ohen the entere sfructecral Load reaisting syetiem is deemed to be deficient, common approaches ch this regard ore employed to encrease sfifitness \& strength woth lemited ductility.

Achieving desined ratco beth the addetional stiffening \& strengthening is the cart of sesmic retrofetteng, the mest common modificateans enclude the addeticn of sfrcetural wails, sfeel braces, onfill walls, bese solators or 8 cepplemintal energy dissipation devices.

Lueal retrofotforgs are tybe cally used esther ohen the netrofit objectives are lemited of derect treatment of the. vulnerable compornanits is needed, the. most popcuter s frequently used method on local netrofotitong is jacketang or confinement by the jackets or reerforced concriefe.

The addition of new reinforce. concrete shedr wall is the most oftenly practised device anien hase to proved to bie effective for contralling global laterae diefts and for redueng damege in freme members.
ch-5
Bueld erg services
cold water deffribution on hegh rise buelding

The cald water disfribution syfftem are three types?
(A) By normal water presscere
(B) By overkfeed system
(C) By aer pressure syetem,
(A) By normal pater pressure::

Ghe normal water pressure from the.: publite iatier: moin is normally inadequate, to serve negh rese budldings. The alter nateve solletan is ecther by over head feed system or, by oer presscre s-ystem.
(B) By over head feed sysfem:-

Weater is pemped into a large tonc on top of the beelideng and 2 destrcbuted to the fexteines by means of grancty.
Advantages:-
\rightarrow ieater es not affested by peak. load hour.
\Rightarrow Nof affected by pooer enterruptions.
\rightarrow Teme needed to replace parts woll not affect the regular scepply of roater.

Desadvantaoges:.
\rightarrow water \Rightarrow sontojectect to contaminations.
\rightarrow Hegh mionttenance cosf
\rightarrow occup Ees valuable spaces
(c) It 3 an annovation of the aer press. erized water. desfributeor? syofem used to dall beeelding that coveld iot be served adequately by sfreet. It B installed to operate in sequence according to the volume of deropred.

Installation \&s layti ocet
Tue basse types of suepply. syestams. used in beeldengs are
\rightarrow eptfeed sysfem
\rightarrow dowen feed syostem,
The explecation of these depends on the project and its codividuaes needs \& speceficater.

Some bosic proncelpes must hoo ever be followed for efficeent and economical derign.
upfeed syestem:
An epfeed 8 yofter bses pressure in a water maen to derectly 8epply fexteres

1 - lemet-401-60
2-sceppry from eety'maen er Ho to 'so pri".
pressure must be socfficeent to oweacarn friction on pipes, fittings, meter $\%$ static head, but stol have enough presscere to fixtures.

supplyman.
The speed arrangement produces the largest pi at the bottom, and as the water moves to the top zones, energy" \Rightarrow expended on friction lasses as the water passes through the pipe and fittings.
Down feed system
when a buelderg as two tall fan. an unfed system, a down feed system os used. Here the water a forsf pumped to copper level storage tares as then flow es by gravity to the fixtures.

2

colder Booster supply peers

Hot water installation
the plumbery for not water: $己$, en principle the sane as for cold, but. there are certain addetional factors that apply to not water systems. j-e. \rightarrow decameter of pope

$$
\rightarrow \text { insulation }
$$

\rightarrow safety devices.
hot water storage tanks:-
All not water storage tan iss must be well enscelated to keep the water hot during thenight. Heat loss depends on many factors (temp, wind, seas on) \& well be approximately on to $1 \mathrm{c} / \mathrm{h}$ durorg the night.

The not water storage tanks cure made for low. pr, use only, they can weth stand a pr, of approx. 30 mtr , head, - Central plants

connection of collectors of hot wooten storage tankas:-
\rightarrow Surface of a standard collector is approximately $1-4 \mathrm{~m}^{2}$
\rightarrow per m^{2} of sues a collector corent pproxemately so lt. of notwater ot 50 k .
collector \& circulation pere the side of the collector closed with a 1 cop can be opened for flushing \& cleaning the collector.

In the tower head sledge, sand and. dirt mary accumulate
connection to drinking mater many
water heater may be connected to the droikrig. water man line only, if the following. points eure fulfilled and where sufficient pressure from the supply side araetable.
alton: There incest never be any other
stop valve beth the non-retuen value. \&s the water heater
\rightarrow Electric boosting:
\Rightarrow Combination of solar. is wood stove neater, may used.

Sanitation
the drainage sypstern rosy be two types.
(1) Waste water es from showers, basin kitchen sinks, washing nocheres, and the bloke. This es also called grey eater. Normally a menemcem of 75 mm oi. pipes are used. for drainage of coste water.
(2) Soil water or sewage is from woes and enenals. hes res also called black water. Minemcem of 100 mm dearneter popes ane used for coosfe carter, when nee horizontally, soil water popes shoceldbe rouen at a steeper slope, such as 1140 as they have solids, these can be of cost ramon or of $p v c$.

Electrical services
(i) Requerement on neghmise bueldetags the requerrements of the plonnery \& execution of electrical works of an ordinary bielding having ground plus one or two floors nocesigg are quete different from those of a multe-stoneyed or high rise bueldery.

A building a classified as negh-rise, If et hos more than 4 floors $(G+3)$ or height more than is mar. It can be. regarded as a miniature township requiring entire range of civic services such as electric power from the electrieaty board, stand/emergency power from diesel generator, water liepplies for various applications, fire fighting system, elevator services, sonetateon, recreation foceleties, 8ω emming pool, leghterg for apartments as well as common areas etc.
(ii) Layucet of wereng-types of winery wiring la process of connecting various. aceessorces for distribution of electrical energy from suppler's meter board to nome appliance such os lamps, fans \& other domestic? appliances is known as electrical wevrag, can be done using two methods which ore

1 Joint box system or tee system 2 -Loup - on system

Fuse
A fuse or an electric fuse is an lectrical/erectronic device that protects fore cercuet from different electrical fouls like over current \& over load. Fuses can be considered as a sacrificeal element in the circuit as they act as a weak lent in the entire circuit.
Types of fieses
thefues ore the following types.
(a) $D C$ fuses
(b) $A C$ fosses.
$D C$ foes
The DC fuse opens or breaks the cercue't when the excessive current food through, at. The only difficulty with the $D C$ fere es that the arc produced by the direct current es very difficult to extinct because there are no zero curvert flows. on the cercceet.
Ac fuse
The Ac fuses are categorized into two types they are the low voltage fuses \& the high voltage fuses. the frequency of the $A C$ fuses changes its amplitude. from 0° to 60° en very one second. Thus the arc extinction en the $A C$ eercuet con. be done easily as compared to the DC cercuet.

Earthing.
Earthing is the method of transmitting the rensfant electricity discharge directly to the ground through low resistance wires or electrical cables. shes es one. of the significant features of electrical network, Because if bields the most eagerly accessible and nazardoces power source much secure to setilize.
uses
The main intention of electrical earthing B to keep away from the danger of electric shock dee to the ocet.floe of current from ground through the not preferred path as well as to make sure that the potential of a conductor does not Increase beth respect to the ground than its planned onsclation.

The main benefits of grocinditg include protection from over voltage stabrelization of voltage, and previenfor from injury, damage \& death.
Leghtorg.
Lroghterg es a major end case of energy an most multe-storey non-residential. beeldings r Design strategies that reduce electric lighting requirements should there by reduce annual electrical canscimpion and peak electrical loads, and. may also lower HVAC loads.

Improved lighters design strategies, specification of new, efficient lighting hardware, and improved operation \&
moentenance of leghting syoftams all promise substaiatial energy savings.
measerement of leght Entensify: The feandiarnental leght entiensity unet
as the candela, nomenally the leght geven. off by one candle, or more precesely ic a socrce that emets monochiromatic nadzateon. of. frequeenoy 540×1012 hertz and that has or radzant entensity in that dirreoteon / 683 watt per steradia?
Ventilateon
ventè lation moves ocet door aer crto a buelderig or R room, \& destributes the aer woth in tre buelding or room. The general perpose of ventelation in bueldergs es to provide healthy aer for breatherg by both dielucting the pollutants oregenateng ming beerlderg and removing the polletants from of. methods of rentilation:

Nateral rentelatern?
of well in sfalled and maentuained, there are several advontage of a natural, ventèlateon system, compared weth artificeal ventelateon sfiftens.
(6) Nateral ventelateon can generally provide a negh ventelateen rate more eeanomically, due to the use of nateenal Farces and large opencrgs.
(b) Nateral ventila teon can be mone energy: efficeent, particulanhy of heatorg res not requered.
(6) well-designed natural ventilateon could be resed to access hagher levels of day loght.
Artificeal ventelatien?:-
(d) Mechanical fans drive artificial ventolar tion. Fans can eèther be ensfalled derectly en wendows on walls, or Ensfalled in aer drects for scepplyeng aer into, or exhaustong aer from a room,
(b) Hhe types of artificisel ventelatuon used depents upon clemate.
Syofem of Nentelation.
Ghe followeng are the different syestem of venti Lation whzeh are
\rightarrow Enhalest ventilation system
\rightarrow Scepply ventelation syestem
\rightarrow Balariced ventilation syestem
\rightarrow Energf wrecovery Bysfen,
prablems on ventilatern
\rightarrow Fntermettrent aer Hoeo \rightarrow Desfrebution of aev
\rightarrow proportcon of oret door aen
\rightarrow Bueldeng seepply 8 exhalesf locateon.
\rightarrow percods of operateor.
\rightarrow maentenance.

Mechanical services
Left:-
A vertical transport equepment that efficiently moves people between floors of a beeildeng or other structure.
generally poepered by electric motor that drive by traction cable \& cocenten weight systern, hike a hoist or hydiravelic. pump.
types
\rightarrow stare left \rightarrow insfetceteon if
\rightarrow hospital left
\rightarrow residential left
\rightarrow Left of cars.

Elevators:-
An elevator is a type of vertical transport equepment. Elevators are generally powered by electric motor.
types
\rightarrow traction elevator
$\rightarrow H y d r a c i e c ~ e l e v a t o r ~$
\rightarrow Traction -Hy draclec elevator
Escalator!:-
An escalator Es a moving sfactcase a conveyor device, transport device four carrying people between floors of R buelding.
types
The common types of escalator are
\rightarrow parallel
\rightarrow mielteple parallel
\rightarrow cress cross.
ch-6
construction ss earth moving equipment
planning \&s selection of construction equepment:-
consfrwetion planning is requeved for completion of the project well with in the stipulated time, if corpora atty the lased down specification at the lowest practical cost. For this an engeneer must study each major/menor item of construe. too to determine the possibility of completing the project at the earliest, with incuring the least expenditure, whale utilizing all adequate resources/ man power/equepment

The construction planning of a project maybe divided into three ports and trey are
(ה) material
(2) La boer (man power)
(3) Finance required (money)
planning as necessary both prior to $\$$ during the actual construction on an. engineered project. Such plannerg B necessary on order to consfricect the project with ch cost and on tree., items which need to be adequately planned include:.
(1) The identification of specific. activities of work required and the enter relation ships bet those items.
(2) The proper sequencang cof the spenefic actirities of coonk so as to complete the profect 2 in the aptimem amount of jome.
(3) Ghe teme for delevery of material \& on sfalled equèpront.
(4) The types, quantities, and dearatean of onefruction plant is equepment.
(5) The dassification \& number of workers needed s the perrods of teme they well be needed.
(8) The amount of temeng of fenancial aserstance that is needed.

Factors affecteng the sfection of consfruen tion equeproent ore -
(1) Standard type of equepment
(2) speceal equepment
(3) Replacement of ports
(4) cost of ourneing \& operating consfriuetoon equéproert.
(5) Econornic lefe of cansfructeon equep:ment.
(6) Sources of consfrueteon eqcepment.

Study on earth moving equepments
drag line:-
A drag line excavator is a piece of heavy equipment used on edvil engineering and surface mining. These are used for road, port consfruetion, pond s canal dredgcrg, and as pele. driving rings.
the dragline is designed to exaea:Nate below the level of maehone. The size of dragline is indicated by the size of the bucket expressed on caboc yards:
components of drag lane
\rightarrow Hoist rope
\rightarrow drag lane bucket
\rightarrow Hoist corepler
\rightarrow Drag coupler
\rightarrow Drag rope
Bell dozer:-
A bull dozer is a crawler equepped with a substaen tran metal plate used to pest large quantic ties of 8 oil, sand.: rubble or other seen mooterial during construction or conversion work \& typically equepped at the rear with a clac-leke device (known as riper) to loosen densely eompoefed vatercaly

奴等解e bell dorer may be of followeng iypes
\rightarrow cracler moented bell dozen
\rightarrow wownted ir
\rightarrow mone bell dorer．
Tractor：－
st is an engeneering vehccle specè－ focally denign to deliven a hegh tractive effort at slow speeds，for the perposes of havling a traeler or noelienery been os that esed in agrecultere or consfrcection．
most commonly，the term \＆used to describe a form venzle that provides the power s traction to mechanize． agriculteral toeks．
Rower shavel：－
A poiver shovel is a bucket－equepped machthe，usualing electrically pooened， used for degging $\%$ loadity earth or fragmented rock \＆s for meneral extare． teon．

Power shovels cose used proticepally for excavation and removal of over－ burden in open－cut menirg operations， though at noy include headeng of menerals，sech as coab，ghey are the modern equevalent of steam shovels， and operate a sinelor fashion．
compacting equipments
Tompeng rollers:-
\rightarrow these are also called shreps foot rollen \rightarrow the most common type is the ane having two drums 1.22 miss wide and 1.06 ether as toper -foot or Club-foot rollers according to the shape of feet.
\rightarrow The coverage area is about \&to $12 y$.
\rightarrow the theckness, of compacting layer. Es kept about 5 cm more than the length of each foot.
\rightarrow The density of the consolidated soil shoceld be abocet $1.48 \mathrm{bg}_{\mathrm{g}} \mathrm{cm}^{2}$.

Smooth wheel rollers:-
\rightarrow The grocend pressure exerted by tandem

\rightarrow performance af. the is moth whee roller depend upon eft load per on wo्dth and diameter of the roll.
\rightarrow The mar grade a road roller can climb es 1 in 5 .
\rightarrow some rollers are made with its - prime mover or engine as a separate cent anzch es a tractor.
\rightarrow the optimum worverg speed. has found to 3 to $6 \mathrm{~km} / \mathrm{h}$.
pnevmatic tyred rollers:-
7 The coverage ariea is abocet sor.
\Rightarrow Tyre pressure may be upto. $7 \mathrm{~kg} / \mathrm{cm}^{2}$.
\rightarrow ot provided aneform pressure through out the wedth.
\rightarrow Thes type of roller consists of a heavity laaded wagon weth several rows of 4 to 6 closely spaced tyfres:
\rightarrow ghey ore particulaing efficeent wher esed to fenesh of the embanle. ment compacted by sheep for roller or on loose sandy soiks.
veibraterg eompactors!:
\rightarrow fhas type of roller as fetfed weth one or two smooth serfaced steel wheels 0.9 m to 1.5 m in drameter and 1.2 m to 1.8 m wede.
\rightarrow Self propelled vibvatory rollers are now avoelable weeghitg from 4 to 6 tonnes.
\rightarrow Vebrateon are generafed by the votation of an eccentric shaft enside.
\rightarrow A vebratory voller Es used for compactorg grancelar base cocerses of is sometemes esed for osphaltic concrete work.
owning \& operatoing cosf:-
owneng cosf:-
of made up of the followirg cosf:
(1) Fnvestment cosf
(20) Depreiceation cosf
(3) major vepaer cosf
(1) Inversment cost:-
ot is a kend of fexed cosf and contonueis to be enccerred whether the equepment is used or not. Hhe anvestment cost compries the folloederg:
\rightarrow procored of equepmient
\rightarrow taxes on equepment
\rightarrow inscrace expances
(2) Deprication cosf: -
whenever any machene or equepments pertorms useful work ets wear \& fear B pound to occer. Hhes can be menomize epto some extent by proper care 3 maentenance but cannot be totally pre ots efficeency also reduees weth the Lapse of time, and at one time ef becomes uneconomical to be used to and need replacement by new enets; thes arnount as deducted yearly from the profets \& kept separately to have sufficient monery for veplacement at and of aseful leffe.
(3) masor repaer cost:-
ahele menor or feeld repaers are carreed ocet diering the day to day working of the equepment, the major repaers are carried ocet affer the sersfaentical lese of equepmert, mojor vepaers and over hauls are the replacement of miojor parts of the equepiment becouse of excessive wos through a long period of cose. Since these repaers requers a heavy amoent of expendeture they are met from the major repair fund. the majar repaer cost is spread ort during the entare lefe spon of equepment.
pperaterg cost:
It consist of followerg:
(1) cost of fueh (ar power)
(D) cost of lebriconts
(3) Serviceng \& maintenance cost
(1) Lapoer cost
(1) eost of feeld nepaeirs
(6) varioves other over heads.

Example -1
A powef shovel weth a dresel engene raked at 160 fuenp. when used to haad trueh, the engene may operate at a max power whèle foling the depper, requering sise, out of a cyele time of dosec, dering the other 15 see, the engene may operate at not more than one half of Ets rated power, asscme that the
shovels operate 50 mers per hoeer. calculate the deresel conscemped perhoren.
SOR
Engere factort
Fillong the depper $=5 / 20 \times 1=0.250$
Rest of cyele $=15 / 20 \times 1 / 2=0.375$
Total engene factor $=0.625$
Tame factor $=50 / 60=0.833$
operating foctor $=0.625 \times 0.833$

$$
=0.520
$$

Fuel consiomper per noeer $=$ operatorg factor x engene fon $p x$ engene type factor

$$
\begin{aligned}
& =0.520 \times 160 \times 0.04 \\
& =3.33 \text { gal } \% \mathrm{hr} .
\end{aligned}
$$

c-hebricating orl

$$
q^{2} \frac{h p \times f \times 0.00 \text { i } \mathrm{lb/hp} \cdot \mathrm{hn}}{7 \mathrm{Hp} / \mathrm{gal}}+\frac{e}{E}
$$

$q=$ quantity asscmed, gal/hr.
$h_{p}=$ nated norse power for engone $c=$ capacety of crankcose, gal
$f=$ aperating factor
$\therefore t=$ no. of nowers bet enanges.
The above formula based on:
An operating faefor of 6.0%. Quantity of sil consumed per rated
norse.pocoer hocer, bet? chearges, woll be 0.00 lb.

Exomple -?
angene $=100 \mathrm{hp}$.
cronkcose copacety $=4 \mathrm{gal}$.
operateng factor $=60 \mathrm{r}$.
No. of hoeer beff charges $=100 \mathrm{hr}$.

$$
\begin{aligned}
q= & \frac{100 \times 0.6 \times 0.006 \mathrm{lb} / \mathrm{hp} \cdot \mathrm{hh}}{7.4 \mathrm{~kb} / \mathrm{gal}}+\frac{4}{100} \\
& =0.049+0.04=0.089 \mathrm{gal} / \mathrm{hr} .
\end{aligned}
$$

Example - 3

Determene the probable cost per noeen for oconeng \& operating 25 ul.yd heaped capaetty botiom dumb wagon wetn six rebber tries, the following infoumatien wdl apply,
Engene 250 hp , dresel
crank case copacety if gallo
Time betn oil charges the 80 hn .
operating factor $60 r$.
vefeel lifue 5 year - $2000 \mathrm{hr} / \mathrm{fr} \rightarrow$ with no salvage vallee.
Lefe of tires 5,000 hn.
Repaer of tirnes $15 y$ of tere depreceation. cost delevered encludrong freeght of taxes RS $=$ RS $92,623,00$

$$
\text { cosfoftires }=\text { Rs } 12,113.00
$$

M\& $R=50 \mathrm{~V} .0$ of depreceateon
envestment rate $=15 \%$.
(1) Feel consumpent per hocer

$$
=250 \times 0.6 \times 0.04=6.0 \mathrm{gal}
$$

(D) Lebricating oil consumped per $h r$.

$$
\begin{aligned}
q & =\frac{250 \times 0.6 \times 0.006 \mathrm{lb} / \mathrm{kpinn}}{7.4 \mathrm{lb} / \mathrm{gal}}+\frac{14}{80} \\
& =0.3 \mathrm{gal} / \mathrm{hr} .
\end{aligned}
$$

(3) cost of owener:
cost delevered zncludery
freeght $\&$ tares $=R S 92,623,00$
Less cosf of teres $=$ RS $12,113.00$
Net cost less tives $=$ RS 80,510
arg-cost par

$$
\begin{aligned}
& =P(n+1) / 2 n \\
& =92,623(-5+1) / 2 \times 5=\text { RS } 55,744.00
\end{aligned}
$$

(4) Annual costi

$$
\begin{aligned}
\text { Depreceatean } & =(80,510-s v)(5 \\
& =R S 16,102
\end{aligned}
$$

roentenance $\&$ vepaèr

$$
=50-9 \times 15,102=R S 8,057.00^{\circ} .
$$

$$
\text { Fnvefment }=15 \% \times \text { par }=\text { RS 8,362.00 }
$$

Total connceal fexed

$$
\text { cosed }=\text { RS } 32,515.00
$$

(b) Hocerly cost:-

$$
\text { Fexed cosf }=32,515 / 2000 \mathrm{hr}=\text { RS } 16.26
$$

Fire depreceaters

$$
=12,113 / 5,000
$$

$$
=\operatorname{ps} 02.42
$$

Fiere repaers $=0.15 \times 2.42$

$$
=\operatorname{ps} 00.36
$$

fuel. $=R s 4 \times 6 \mathrm{gal}$.
$=$ RS $24-00$
wovicaterg oil $=0-3 \times$ ps is $=0.04-50$

Total cost per ho excludery

$$
\begin{aligned}
& \text { xcludery } \\
& \text { taboer }=\text { RS } 47-10 \text {. }
\end{aligned}
$$

Chr7 Soil reentoreeng trechneques
\therefore Necessity of soir reenforceng:-
soil neonforcement is necessory on lands where
\rightarrow bearing capacity is low
\rightarrow loose sorl
\rightarrow chances of eroson are hegh
Soil reenforeement is performed by placerg tensile element onthe sollto ennonce its natered stabrirety \& Strength,
were-meogh! -
were-mesh can offer benefots is when a poor or weak subgrade exists may be expected to move or settle. were mesh ean of offer tensile sfrength to the 8 ale.
Geo-synthe ATss:-
Geo-synthetios are considered necessary and andes pensible for an economical solution in multople function, suen as reenforcement, separation, foltration, drainage, barrieos, erosian control, cantaenment and protection

Geo-synthetics maperials dere notherg but planar, polymeric materoals
used co contact weth sol /rock/ior any boner geetechnical material, for for any, felthate? draenage, separation, Reenforcement. protectec, sealeng \& packeng. rypes of geos \&yntretics
Followeng ane the tripes of geonsynthetic used en cevil engg.
(1) Greo textiles
(2) Geo giveds
(4) Gri celly
(3) Geonets
(5) Geo membvanes
(7) Geo camposites.
striengthenreng of embonkments
Geotextèles and geagrids nave been coedely employed en embonikment consfrcectern to neduce subarade settiement \& emprove embonkment stobrilety.

Here ever these. these gre synthetic materials are generally applied on new buelt embankements bayer by layer, are detticult to cetelere ro existeng. eonb ank ments, and need nelateveby large defermateon or sleps along the fabice-soil ioterfaces to mobe'kize theer rreenforcemert effects.

Reenforeed s ox slapes and em ban kunents
A reentarced slope is defined as a compacted fall embanement that incorpon rafes the use of horizontally placed ofeosynthetic reonforcement to enhonce the sfabcilety of the soil sfacetere, The differsent following applecation abe
\rightarrow Reenfarced steep slapes
\rightarrow Surfacial stabillety of embank ments.
\rightarrow Embantments consfrcieted over weak sores
\rightarrow Temporary walls
\rightarrow presscre Relief wolls.

Soil reehforeement teehneques
Soil veinforcong. techneques cart be devided into two major ategaries
(1) In situe sul reenforcement
(2) constructed soll reen forcemenf.

In the renste reenforcement techineque the reenforcement is placed in an undÉsfurbed soil to form a neenforced sorl structere ghes encludes the techneque of \&oll naeleng. \& soil dowellerg. The reenforeement
used for rnsita structare ris leseally. weor owerg to the method of installation.
(1) epen exacavation lesing sôl nadels
(8) Consfructed sul reenforement techneque.

Applicatean of soil reenforcement:-
(1) Slope faèlere repaers.
(D) Slope catting repaèrs.
(8) Streep slopes embenk ments \& beends
((1) wedenerg of slope cresf
(5) Bridge obietment is weody wolls
(B) Soile retaènching structiones
\rightarrow Fore walls
$\vec{\rightarrow}$ cornter scorp walls
\rightarrow Retaen ing walls
(7) Read \& raelivay embernkment

A wede vonge of slape stabcilezation measeres is avallable to salve slope staberty.
(a) Bolanced cut \& foll

(b) foll brench cut:

(c) Typecal foll:-

